These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ethylene signaling cross-talk with other hormones in Arabidopsis thaliana exposed to contrasting phosphate availability: Differential effects in roots, leaves and fruits.
    Author: Munné-Bosch S, Simancas B, Müller M.
    Journal: J Plant Physiol; 2018 Jul; 226():114-122. PubMed ID: 29758376.
    Abstract:
    Ethylene signaling plays a major role in the regulation of plant growth, but its cross-talk with other phytohormones is still poorly understood. Here, we investigated whether or not a defect in ethylene signaling, particularly in the ETHYLENE INSENSITIVE3 (EIN3) transcription factor, alters plant growth and influences the contents of other phytohormones. With this aim, a hormonal profiling approach using ultrahigh performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) was used to unravel organ-specific responses (in roots, leaves and fruits) in the ein3-1 mutant and wild-type A. thaliana plants exposed to contrasting phosphate (Pi) availability. A defect in ethylene signaling in the ein3-1 mutant increased the biomass of roots, leaves and fruits, both at 0.5 mM and 1 mM Pi, thus indicating the growth-inhibitory role of ethylene in all tested organs. The hormonal profiling in roots revealed a cross-talk between ethylene signaling and other phytohormones, as indicated by increases in the contents of auxin, gibberellins and the stress-related hormones, abscisic acid, salicylic acid and jasmonic acid. The ein3-1 mutant also showed increased cytokinin contents in leaves. Reduced Pi availability (from 1 mM to 0.5 mM Pi) affected fruit growth, but not root and leaf growth, thus indicating mild Pi deficiency. It is concluded that ethylene signaling plays a major role in the modulation of plant growth in A. thaliana and that the ein3-1 mutant is not only altered in ethylene signaling but in the contents of several phytohormones in an organ-specific manner, thus indicating a hormonal cross-talk.
    [Abstract] [Full Text] [Related] [New Search]