These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MiR-140-3p is Involved in In-Stent Restenosis by Targeting C-Myb and BCL-2 in Peripheral Artery Disease.
    Author: Zhu ZR, He Q, Wu WB, Chang GQ, Yao C, Zhao Y, Wang M, Wang SM.
    Journal: J Atheroscler Thromb; 2018 Nov 01; 25(11):1168-1181. PubMed ID: 29760303.
    Abstract:
    AIM: In-Stent Restenosis (ISR) is the major reason for recurrent ischemia and amputation after endovascular treatment of Peripheral Artery Disease (PAD). Our previous study demonstrated that miR-140-3p is significantly down-regulated in PAD arteries. However, expression and function of miR-140-3p in ISR of human PAD are currently unclear.The aim of this study is to determine the miR-140-3p expression and its regulative role in ISR of PAD. METHODS: The RNA level was determined by quantitative real-time polymerase chain Reaction (qRT-PCR) and in situ hybridization. Primary cultured ASMCs were isolated from human femoral arterial of the healthy donors or ISR patients. Cell proliferation was determined by Edu incorporation and CCK-8 assay. Apoptosis was determined by Annexin-Ⅴ/PI Double-Staining assay and TUNEL assay. A rat carotid artery balloon angioplasty model was used to investigate the effect of miR-140-3p on restenosis. RESULTS: MiR-140-3p was significantly down-regulated in PAD and ISR arteries than normal arteries. Primary cultured ISR ASMCs exhibited elevated proliferation and down-regulated miR-140-3p than normal ASMCs. Transfection of miR-140-3p mimic attenuated PDGF-BB-induced proliferation in cultured ASMCs and induced apoptosis. Luciferase reporter assay indicated that miR-140-3p transfection significantly down-regulated C-Myb and BCL-2 in ISR ASMCs by targeting to their 3'-UTRs. MiR-140-3p transfection induced anti-proliferation and apoptosis in ASMCs, which were ameliorated by over-expression of C-Myb or BCL-2. Moreover, the animal study showed that miR-140-3p can reduce restenosis following angioplasty via targeting C-Myb and BCL-2. CONCLUSIONS: The result suggests that miR-140-3p regulates ASMC function via targeting C-Myb and BCL-2 in the process of ISR in PAD. The novel findings may offer a hopeful therapeutic target for human PAD.
    [Abstract] [Full Text] [Related] [New Search]