These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Arsenic in Playground Soils from Kindergartens and Green Recreational Areas of Bratislava City (Slovakia): Occurrence and Gastric Bioaccessibility. Author: Hiller E, Filová L, Jurkovič Ľ, Lachká L, Kulikova T, Šimurková M. Journal: Arch Environ Contam Toxicol; 2018 Oct; 75(3):402-414. PubMed ID: 29770841. Abstract: In this study, playground soils of kindergartens and green recreational zones in Bratislava were investigated for the occurrence and gastric bioaccessibility of arsenic (As) in the < 150 μm soil size fraction. Eighty topsoil (0-10 cm) samples were collected from playgrounds in kindergartens and green recreational zones throughout the urban area. Bioaccessibility measurements of As were performed using the Simple Bioaccessibility Extraction Test that mimics the human gastric environment, and resulting extracts were analyzed by hydride generation-atomic absorption spectrometry to assess bioaccessible As concentrations in the collected playground soils. Single selective chemical extractions using hydroxylamine hydrochloride-hydrochloric acid and dithionite-citrate-bicarbonate solutions also were used to determine the amount of As associated with amorphous and amorphous/crystalline Fe oxy-hydroxides in soils, respectively. The results showed that the spatial distribution of total As concentrations was related to the historical development of the city, with higher soil concentrations of As found in the old city centre and related urban zones and the lower ones on the outskirts of Bratislava. There was a variation in the values of bioaccessible concentrations and fractions of As, with ranges from 0.40 to 5.60 mg/kg and 7.29 to 56.1%, respectively. Correlation and multivariable linear regression analyses revealed that bioaccessible concentrations of As were linearly related to its total concentrations in the soils, whereas dithionite-citrate-bicarbonate extractable Fe (FeDCB) was the main soil property, controlling the bioaccessibility of As. When the amount of FeDCB in the soils increased, As bioaccessibility decreased, confirming an importance of Fe bound to amorphous and crystalline iron oxy-hydroxides to the limitation of As bioaccessibility in urban playground soils of Bratislava. Additionally, single selective extractions showed that As concentrations extracted by hydroxylamine hydrochloride (AsHH) and dithionite-citrate-bicarbonate (AsDCB) were positively correlated with its bioaccessible concentrations (Spearman r = 0.75 and 0.62, respectively; p < 0.001).[Abstract] [Full Text] [Related] [New Search]