These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Unilateral movement preparation causes task-specific modulation of TMS responses in the passive, opposite limb. Author: Chye L, Riek S, de Rugy A, Carson RG, Carroll TJ. Journal: J Physiol; 2018 Aug; 596(16):3725-3738. PubMed ID: 29775218. Abstract: KEY POINTS: Activity in the primary motor cortices of both hemispheres increases during unilateral movement preparation, but the functional role of ipsilateral motor cortex activity is unknown. Ipsilateral motor cortical activity could represent subliminal 'motor planning' for the passive limb. Alternatively, it could represent the state of the active limb, to support coordination between the limbs should a bimanual movement be required. Here we assessed how preparation of forces toward different directions, with the left wrist, alters evoked responses to transcranial magnetic stimulation of left motor cortex. Preparation of a unilateral movement caused excitability increases in ipsilateral motor cortex that reflected forces produced with the active limb in an intrinsic (body-centred), rather than an extrinsic (world-centred), coordinate system. These results suggest that ipsilateral motor cortical activity prior to unilateral action reflects the state of the active limb, rather than subliminal motor planning for the passive limb. ABSTRACT: Corticospinal excitability is modulated for muscles on both sides of the body during unilateral movement preparation. For the effector, there is a progressive increase in excitability, and a shift in direction of muscle twitches evoked by transcranial magnetic stimulation (TMS) toward the impending movement. By contrast, the directional characteristics of excitability changes in the opposite (passive) limb have not been fully characterized. Here we assessed how preparation of voluntary forces towards four spatially distinct visual targets with the left wrist alters muscle twitches and motor-evoked potentials (MEPs) elicited by TMS of left motor cortex. MEPs were facilitated significantly more in muscles homologous to agonist rather than antagonist muscles in the active limb, from 120 ms prior to voluntary EMG onset. Thus, unilateral motor preparation has a directionally specific influence on pathways projecting to the opposite limb that corresponds to the active muscles rather than the direction of movement in space. The directions of TMS-evoked twitches also deviated toward the impending force direction of the active limb, according to muscle-based coordinates, following the onset of voluntary EMG. The data indicate that preparation of a unilateral movement increases task-dependent excitability in ipsilateral motor cortex, or its downstream projections, that reflects the forces applied by the active limb in an intrinsic (body-centred), rather than an extrinsic (world-centred), coordinate system. The results suggest that ipsilateral motor cortical activity prior to unilateral action reflects the state of the active limb, rather than subliminal motor planning for the passive limb.[Abstract] [Full Text] [Related] [New Search]