These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Novel oxazolxanthone derivatives as a new type of α-glucosidase inhibitor: synthesis, activities, inhibitory modes and synergetic effect. Author: Ding SM, Lan T, Ye GJ, Huang JJ, Hu Y, Zhu YR, Wang B. Journal: Bioorg Med Chem; 2018 Jul 23; 26(12):3370-3378. PubMed ID: 29776833. Abstract: Xanthone derivatives have shown good α-glucosidase inhibitory activity and have drawn increased attention as potential anti-diabetic compounds. In this study, a series of novel oxazolxanthones were designed, synthesized, and investigated as α-glucosidase inhibitors. Inhibition assays indicated that compounds 4-21 bearing oxazole rings exhibited up to 30-fold greater inhibitory activity compared to their corresponding parent compound 1b. Among them, compounds 5-21 (IC50 = 6.3 ± 0.4-38.5 ± 4.6 μM) were more active than 1-deoxynojirimycin (IC50 = 60.2 ± 6.2 μM), a well-known α-glucosidase inhibitor. In addition, the kinetics of enzyme inhibition measured by using Lineweaver-Burk analysis shows that compound 4 is a competitive inhibitor, while compounds 15, 16 and 20 are non-competitive inhibitors. Molecular docking studies showed that compound 4 bound to the active site pocket of the enzyme while compounds 15, 16, and 20 did not. More interestingly, docking simulations reveal that some of the oxazolxanthone derivatives bind to different sites in the enzyme. This prediction was further confirmed by the synergetic inhibition experiment, and the combination of representative compounds 16 and 20 at the optimal ratio of 4:6 led to an IC50 value of 1.9 ± 0.7 μM, better than the IC50 value of 7.1 ± 0.9 μM for compound 16 and 8.6 ± 0.9 μM for compound 20.[Abstract] [Full Text] [Related] [New Search]