These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A 3-D Region-Growing Motion-Tracking Method for Ultrasound Elasticity Imaging.
    Author: Wang Y, Jiang J, Hall TJ.
    Journal: Ultrasound Med Biol; 2018 Aug; 44(8):1638-1653. PubMed ID: 29784436.
    Abstract:
    A 3-D region-growing motion-tracking (RGMT) method for ultrasound elasticity imaging is described. This 3-D RGMT method first estimates the displacements at a sparse subset of points, called seeds; uses an objective measure to determine, among those seeds, which displacement estimates to trust; and then performs RGMT in three dimensions to estimate displacements for the remaining points in the field. During the growing process in three dimensions, the displacement estimate at one grid point is employed to guide the displacement estimation of its neighboring points using a 3-D small search region. To test this algorithm, volumetric ultrasound radiofrequency echo data were acquired from one phantom and five in vivo human breasts. Displacement estimates obtained with the 3-D RGMT method were compared with a published 2-D RGMT method via motion-compensated cross-correlation (MCCC) of pre- and post-deformation radiofrequency echo signals. For data from experiments with the phantom, the MCCC values in the entire tracking region of interest averaged approximately 0.95, and the contrast-to-noise ratios averaged 4.6 for both tracking methods. For all five patients, the average MCCC values within the region of interest obtained with the 3-D RGMT were consistently higher than those obtained with the 2-D RGMT method. These results indicate that the 3-D RGMT algorithm is able to track displacements with increased accuracy and generate higher-quality 3-D elasticity images than the 2-D RGMT method.
    [Abstract] [Full Text] [Related] [New Search]