These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Entrainment of split circadian activity rhythms in hamsters.
    Author: Boulos Z, Morin LP.
    Journal: J Biol Rhythms; 1985; 1(1):1-15. PubMed ID: 2979571.
    Abstract:
    Hamsters that showed splitting of their circadian rhythms of wheel-running activity following long-term exposure to constant illumination (LL) were exposed to light-dark (LD) cycles with 2-hr dark segments, and with periods of 24.00, 24.23 or 24.72 hr. For comparison, hamsters showing nonsplit rhythms were also studied. In all cases of split rhythms, at least one of the two split components entrained to the LD cycles. In some animals, the second component continued to free-run until it merged with the entrained component, while in others, the second component also entrained to the LD cycle but maintained a stable phase angle of 6-14.5 hr relative to dark onset. These results were obtained in cases where the period of the LD cycle was shorter than that of the split rhythms and in cases where it was longer, implying that split components can be phase-advanced as well as phase-delayed by 2 hr of darkness. Three hamsters that showed stable entrainment of split rhythms were allowed to free-run in LL. The LD cycles were then reinstated, but instead of overlapping with the first component, as it did before, the dark segment was timed to overlap with the second. The entrainment patterns that ensued were similar to the ones obtained during the first LD exposure, indicating that the two split components respond to darkness in a qualitatively similar fashion. These results are further evidence that the pacemaker system underlying split circadian activity rhythms in hamsters is composed of two mutually coupled populations of oscillators that have similar properties, including a bidirectional phase response curve. Such a dual-oscillator organization may also underlie normal, or nonsplit, activity rhythms, as suggested by Pittendrigh and Daan (1976c), but the data are also compatible with the alternative view that the circadian pacemaker consists of a large number of coupled oscillators, which only dissociate into two separate populations in some animals under conditions of moderate LL intensity.
    [Abstract] [Full Text] [Related] [New Search]