These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Speech Understanding in Noise for Adults With Cochlear Implants: Effects of Hearing Configuration, Source Location Certainty, and Head Movement.
    Author: Gifford RH, Loiselle L, Natale S, Sheffield SW, Sunderhaus LW, S Dietrich M, Dorman MF.
    Journal: J Speech Lang Hear Res; 2018 May 17; 61(5):1306-1321. PubMed ID: 29800361.
    Abstract:
    PURPOSE: The primary purpose of this study was to assess speech understanding in quiet and in diffuse noise for adult cochlear implant (CI) recipients utilizing bimodal hearing or bilateral CIs. Our primary hypothesis was that bilateral CI recipients would demonstrate less effect of source azimuth in the bilateral CI condition due to symmetric interaural head shadow. METHOD: Sentence recognition was assessed for adult bilateral (n = 25) CI users and bimodal listeners (n = 12) in three conditions: (1) source location certainty regarding fixed target azimuth, (2) source location uncertainty regarding roving target azimuth, and (3) Condition 2 repeated, allowing listeners to turn their heads, as needed. RESULTS: (a) Bilateral CI users exhibited relatively similar performance regardless of source azimuth in the bilateral CI condition; (b) bimodal listeners exhibited higher performance for speech directed to the better hearing ear even in the bimodal condition; (c) the unilateral, better ear condition yielded higher performance for speech presented to the better ear versus speech to the front or to the poorer ear; (d) source location certainty did not affect speech understanding performance; and (e) head turns did not improve performance. The results confirmed our hypothesis that bilateral CI users exhibited less effect of source azimuth than bimodal listeners. That is, they exhibited similar performance for speech recognition irrespective of source azimuth, whereas bimodal listeners exhibited significantly poorer performance with speech originating from the poorer hearing ear (typically the nonimplanted ear). CONCLUSIONS: Bilateral CI users overcame ear and source location effects observed for the bimodal listeners. Bilateral CI users have access to head shadow on both sides, whereas bimodal listeners generally have interaural asymmetry in both speech understanding and audible bandwidth limiting the head shadow benefit obtained from the poorer ear (generally the nonimplanted ear). In summary, we found that, in conditions with source location uncertainty and increased ecological validity, bilateral CI performance was superior to bimodal listening.
    [Abstract] [Full Text] [Related] [New Search]