These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tanshinone IIA exerts neuroprotective effects on hippocampus-dependent cognitive impairments in diabetic rats by attenuating ER stress-induced apoptosis. Author: Chen J, Bi Y, Chen L, Zhang Q, Xu L. Journal: Biomed Pharmacother; 2018 Aug; 104():530-536. PubMed ID: 29800917. Abstract: This study aimed to investigate the mechanism by which tanshinone IIA (Tan IIA) suppresses neuronal apoptosis in the hippocampus of diabetic rats. Sprague-Dawley (SD) rats were randomly divided into the following four groups: a control group, a diabetes group and diabetes groups treated with different doses (2 or 4 mg/kg/day) of Tan IIA. Streptozotocin (STZ) was injected into the rats to induce diabetes. Two days after STZ treatment, Tan IIA was intraperitoneally administered to rats in the Tan IIA groups, whereas an equal volume of saline was administered to rats in the control and diabetes groups. After 6 weeks, a one-trial object recognition task and the Morris water maze were applied. The diabetes group displayed notably decreased learning and memory abilities compared with the control group (P < 0.05). Tan IIA rescued hippocampus-dependent memory. Superoxide dismutase (SOD) activity was reduced, and reactive oxygen species (ROS) production, malondialdehyde (MDA) content, and 78-kDa glucose-regulated protein (Grp78), growth arrest and DNA damage-inducible gene 153 (CHOP/GAD153) and cleaved caspase-3 levels were increased in the hippocampus of diabetic rats compared with that of control rats, changes that were accompanied by an increase in neuronal apoptosis in diabetic rats compared with control rats (P < 0.01). However, Tan IIA reduced the MDA content and GRP78 and CHOP expression by inducing SOD activity. Tan IIA attenuated neuronal apoptosis and improved learning and memory by suppressing endoplasmic reticulum (ER) stress activation.[Abstract] [Full Text] [Related] [New Search]