These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Impact of inorganic ions and natural organic matter on arsenates removal by ferrate(VI): Understanding a complex effect of phosphates ions. Author: Kolařík J, Prucek R, Tuček J, Filip J, Sharma VK, Zbořil R. Journal: Water Res; 2018 Sep 15; 141():357-365. PubMed ID: 29804022. Abstract: Arsenic compounds are carcinogenic to humans and are typically removed from contaminated water using various sorbents. The ionic composition plays a significant role in arsenate removal efficiency during the process of water remediation. Here, we quantify the effects of natural ions (chlorides, nitrates, carbonates, sulfates, and phosphates) and humic acid on the removal of arsenates by ferrate(VI) at pH = 6.6. In the experiments, the initial concentration of arsenates was 10 mg L-1 (as As) and the concentrations of ions varied in the range from 5 to 100 mg L-1 of element in ionic form and humic acid. The achieved results show that only phosphate ions had principle influence on the efficiency of arsenate removal by ferrate(VI). The effect of phosphates was elucidated by applying transmission electron microscopy, energy-dispersive X-ray spectroscopy, and low temperature in-field 57Fe Mössbauer spectroscopy to solid samples, prepared under different weight ratios of ferrate(VI), arsenates, and phosphates. These results show three crucial effects of phosphates on the arsenate removal mechanisms. At low P:As weight ratio (up to 1:1), the incorporation of arsenate ions into the crystalline structure of γ-Fe2O3/γ-FeOOH nanoparticles was found to be suppressed by the presence of phosphates. Thus, arsenates were mainly adsorbed onto the surface of γ-Fe2O3/γ-FeOOH nanoparticles. Further increase in the P:As weight ratio (more than 1:1) resulted in the competition between arsenates and phosphates sorption. With the increased concentration of phosphate ions, the number of arsenates on the surface of γ-Fe2O3/γ-FeOOH nanoparticles was reduced. Finally, the complexation of iron(III) ions with phosphate ions occurred, leading to a decrease in the arsenates removal efficiency, which resulted from a lower content of precipitated γ-Fe2O3/γ-FeOOH nanoparticles. All these aspects need to be considered prior to application of ferrate(VI) for arsenates removal in real natural waters.[Abstract] [Full Text] [Related] [New Search]