These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reduced Aβ secretion by human neurons under conditions of strongly increased BACE activity. Author: Scholz D, Chernyshova Y, Ückert AK, Leist M. Journal: J Neurochem; 2018 Oct; 147(2):256-274. PubMed ID: 29804308. Abstract: The initial step in the amyloidogenic cascade of amyloid precursor protein (APP) processing is catalyzed by beta-site APP-cleaving enzyme (BACE), and this protease has increased activities in affected areas of Alzheimer's disease brains. We hypothesized that altered APP processing, because of augmented BACE activity, would affect the actions of direct and indirect BACE inhibitors. We therefore compared post-mitotic human neurons (LUHMES) with their BACE-overexpressing counterparts (BLUHMES). Although β-cleavage of APP was strongly increased in BLUHMES, they produced less full-length and truncated amyloid beta (Aβ) than LUHMES. Moreover, low concentrations of BACE inhibitors decreased cellular BACE activity as expected, but increased Aβ1-40 levels. Several other approaches to modulate BACE activity led to a similar, apparently paradoxical, behavior. For instance, reduction in intracellular acidification by bepridil increased Aβ production in parallel with decreased BACE activity. In contrast to BLUHMES, the respective control cells (LUHMES or BLUHMES with catalytically inactive BACE) showed conventional pharmacological responses. Other non-canonical neurochemical responses (so-called 'rebound effects') are well-documented for the Aβ pathway, especially for γ-secretase: a partial block of its activity leads to an increased Aβ secretion by some cell types. We therefore compared LUHMES and BLUHMES regarding rebound effects of γ-secretase inhibitors and found an Aβ rise in LUHMES but not in BLUHMES. Thus, different cellular factors are responsible for the γ-secretase- versus BACE-related Aβ rebound. We conclude that increased BACE activity, possibly accompanied by an altered cellular localization pattern, can dramatically influence Aβ generation in human neurons and affect pharmacological responses to secretase inhibitors. OPEN PRACTICES: Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.[Abstract] [Full Text] [Related] [New Search]