These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Quantitative analysis of emphysema and air trapping at inspiratory and expiratory phase multi-slice spiral CT scan in smokers: correlation with pulmonary function test].
    Author: Zhang D, Guan Y, Fan L, Xia Y, Liu SY.
    Journal: Zhonghua Yi Xue Za Zhi; 2018 May 22; 98(19):1467-1473. PubMed ID: 29804412.
    Abstract:
    Objective: To quantify emphysema and air trapping at inspiratory and expiratory phase multi-slice spiral CT(MSCT) scanning in smokers without respiratory symptoms, and analyze the correlation between the CT quantifiable parameters and lung function parameters. Methods: A total of 72 smokers, who underwent medical examinations from September 2013 to September 2016 in Changzheng Hospital were enrolled in this research and were divided into two groups: 24 smokers with COPD and 48 smokers without COPD.Besides, thirty-nine non-smokers with normal pulmonary function were enrolled as the controls.All subjects underwent double phase MSCT scanning and pulmonary function tests.CT quantifiable parameters of emphysema included the low attenuation area below a threshold of -950 Hounsfield Units (HU)(LAA%(-950)), the lowest 15th percentile of the histogram of end-inspiratory attenuation values (P(15-IN)), the lowest 15th percentile of the histogram of end-expiratory attenuation values (P(15-EX)), relative volume change(RVC) and the expiratory to inspiratory ratio of mean lung density (E/I(MLD)). Pulmonary function parameters included forced expiratory volume in 1 second expressed as percent predicted (FEV(1)%), forced expiratory volume in one second to forced vital capacity ratio (FEV(1)/FVC), residual volume to total lung capacity ratio (RV/TLC) and carbon monoxide diffusion capacity corrected for alveolar volume (DLCO/VA). The differences of CT quantifiable parameters and pulmonary function parameters among the three groups were analyzed by using one-way analysis of variance or Kruskal-Wallis H test.The correlation between CT quantifiable parameters and pulmonary function parameters was analyzed by using Spearman's correlation analysis. Results: The differences of LAA%(-950)(the values for the controls, the group of smokers with out COPD and the group of smokers with COPD were 0.5%±0.7%, 0.7%±1.2% and 2.0%±2.4% respectively), P(15-IN)(the values of the three groups were (-892±33), (-905±15) and (-907±22) HU respectively), FEV(1)%(the values of the three groups were 88.4%±8.8%, 84.2%±7.5% and 82.1%±8.0% respectively), FEV(1)/FVC(the values of the three groups were 78.0%±3.8%, 76.6%±4.3% and 67.3%±5.5% respectively), DLCO/VA (the values of the three groups were (1.36±0.25), (1.30±0.22) and (1.21±0.22) mmol·min(-1)·kPa(-1)·L(-1) respectively) and RV/TLC (the values of the three groups were 49.5%±6.6%, 45.9%±6.0% and 53.0%±6.4% respectively) among the three groups were statistically significant (all P<0.05). In the control group, LAA%(-950) negatively correlated with FEV(1)/FVC and DLCO/VA(r=-0.32, P=0.04; r=-0.69, P=0.00) and neither did P(15-IN) with FEV(1)%(r=-0.14, P=0.02). Inversely, P(15-IN) positively correlated with DLCO/VA (r=0.55, P=0.00). In the group of smokers without COPD, LAA%(-950) negatively correlated with FEV(1)/FVC and DLCO/VA(r=-0.31, P=0.04; r=-0.42, P=0.00), and P(15-IN) positively correlated with FEV(1)/FVC and DLCO/VA (r=0.33, P=0.02; r=0.30, P=0.04). In the group of smokers with COPD, LAA%(-950) negatively correlated with DLCO/VA (r=-0.62, P=0.00), but positively correlated with RV/TLC (r=0.59, P=0.00). And P(15-IN) positively correlated with DLCO/VA(r=0.53, P=0.01). Conclusions: Smokers emphysema and air trapping can be effectively evaluated by double phase MSCT. Moreover, two of the CT quantifiable parameters, LAA%(-950) and P(15-IN), are highly sensitive to changes in pulmonary function. 目的: 定量分析无症状吸烟者在多层螺旋CT(MSCT)呼吸双相扫描下肺气肿及空气潴留(AT),并探讨其与肺功能的相关性。 方法: 收集2013年9月至2016年9月在第二军医大学长征医院进行体检的72例吸烟者,根据肺功能检查结果分为吸烟慢性阻塞性肺疾病(COPD组)24例和吸烟非COPD组48例,另纳入39名不吸烟且肺功能正常的健康志愿者作为对照组。所有受试者均接受MSCT呼吸双相扫描和肺功能检查。CT肺气肿定量参数包括:深吸气末阈值-950 HU以下低衰减区占全肺体积的百分率(LAA%(-950))、深吸气末全肺像素CT值直方图上第15百分位点对应的CT值(P(15-IN)),深呼气末全肺像素CT值直方图上第15百分位点对应的CT值(P(15-EX))、呼吸相对容积改变(RVC)及平均肺密度呼吸比值(E/I(MLD))。肺功能参数包括:第1秒用力呼气容积实测值占预计值百分率(FEV(1)%)、FEV(1)与用力肺活量的比值(FEV(1)/FVC)、残气量与肺总量比值(RV/TLC)及单位肺泡容积一氧化碳扩散量(DLCO/VA)。运用单因素方差分析或Kruskal-Wallis H检验比较三组间CT定量参数、肺功能指标的差异,采用Spearman相关分析评价CT定量参数与肺功能指标的相关性。 结果: 对照组、吸烟非COPD组及吸烟COPD组间肺气肿参数LAA%(-950)(三组数值分别为0.5%±0.7%、0.7%±1.2%及2.0%±2.4%)、P(15-IN)[三组数值分别为(-892±33)、(-905±15)及(-907±22) HU]差异均有统计学意义(均P<0.05);肺功能参数FEV(1)%(三组数值分别为88.4%±8.8%、84.2%±7.5%及82.1%±8.0%)、FEV(1)/FVC(三组数值分别为78.0%±3.8%、76.6%±4.3%及67.3%±5.5%)、DLCO/VA[三组数值分别为(1.36±0.25)、(1.30±0.22)及(1.21±0.22) mmol·min(-1)·kPa(-1)·L(-1)]、RV/TLC(三组数值分别为49.5%±6.6%、45.9%±6.0%及53.0%±6.4%)差异均有统计学意义(均P<0.05)。不吸烟对照组的LAA%(-950)与FEV(1)/FVC、DLCO/VA(r=-0.32,P=0.04;r=-0.69,P=0.00),P(15-IN)与FEV(1)%(r=-0.14,P=0.02)均存在负相关性;P(15-IN)与DLCO/VA(r=0.55,P=0.00)存在正相关性。吸烟非COPD组的LAA%(-950)与FEV(1)/FVC、DLCO/VA(r=-0.31,P=0.04;r=-0.42,P=0.00)均存在负相关性;P(15-IN)与FEV(1)/FVC、DLCO/VA(r=0.33,P=0.02;r=0.30,P=0.04)均存在正相关性。吸烟COPD组的LAA%(-950)与DLCO/VA存在负相关性(r=-0.62,P=0.00),与RV/TLC存在正相关性(r=0.59,P=0.00);P(15-IN)与DLCO/VA存在正相关性(r=0.53,P= 0.01)。 结论: MSCT呼吸双相扫描能有效评价吸烟者肺气肿及空气潴留的改变,且LAA%(-950)及P(15-IN)指标能更敏感评价吸烟者肺功能改变。.
    [Abstract] [Full Text] [Related] [New Search]