These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cl- -HCO3- -stimulated ATPase in intestinal mucosa of Aplysia. Author: Gerencser GA, Lee SH. Journal: Am J Physiol; 1985 Feb; 248(2 Pt 2):R241-8. PubMed ID: 2982287. Abstract: The serosa negative transepithelial potential difference across Aplysia intestine is generated by a Na+-independent, active electrogenic Cl- absorptive mechanism. In an attempt to clarify the Cl- absorptive mechanism an anion-stimulated ATPase was prepared from plasma membranes from Aplysia enterocytes utilizing differential centrifugation and sucrose density gradient techniques. ATPase activity, which could be activated by either Cl- or HCO3-, was found in the plasma membrane fraction. Maximal anion-ATPase activity was achieved with either 25 mM Cl- or 25 mM HCO3-. The apparent Km for Cl- activation of the ATPase was 10.3 mM, whereas apparent Km for HCO3- was 9.7 mM. ATP was the most effective nucleotide substrate for both HCO3- and Cl- -ATPase activities, whereas optimum pH for both activities was 7.8. These enzyme activities were inhibited more than 30% by thiocyanate (10 mM). Acetazolamide and vanadate were also found to strongly inhibit both Cl- and HCO3- -ATPase activities, whereas 10 microM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid, 1 mM furosemide, or 1 mM ouabain had little or no effect. These results are consistent with the hypothesis that the active Cl- transport mechanism in Aplysia intestine could be a Cl- -HCO3- -stimulated ATPase found in the enterocyte plasma membrane.[Abstract] [Full Text] [Related] [New Search]