These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural alterations of the inner mitochondrial membrane in ischemic liver cell injury.
    Author: Okayasu T, Curtis MT, Farber JL.
    Journal: Arch Biochem Biophys; 1985 Feb 01; 236(2):638-45. PubMed ID: 2982320.
    Abstract:
    Mitoplasts were prepared from 3-h ischemic livers in an attempt to define the structural alterations in the inner membrane that may account for the functional deficiencies of ischemic mitochondria. Mitoplasts from both control and ischemic livers had similar specific activities of cytochrome oxidase and succinate-cytochrome c reductase. With both preparations, the specific activity of rotenone-insensitive NADH-cytochrome c reductase was 10-fold lower than in the mitochondria from which they were prepared. Ischemic mitoplasts had no respiratory control with ADP, and had a slightly reduced phospholipid to protein ratio and an increased cholesterol to protein ratio. As a result, the cholesterol to phospholipid molar ratio was increased from the control of 0.04 to 0.08. There were also differences in the content of individual phospholipid species. Phosphatidylcholine increased by 15%, while cardiolipin decreased by 60%. There were increases in sphingomyelin and in the lysophospholipids of phosphatidylcholine, ethanolamine, and cardiolipin. Pretreatment with chlorpromazine did not prevent these changes. Linoleic acid was decreased by 35% in ischemic phospholipids, and the content of free fatty acids was increased 4-fold. Electron spin resonance spectroscopy of mitoplasts spin labeled with either 5- or 12-doxyl stearic acid revealed an increased molecular order (decreased fluidity) of ischemic inner mitochondrial membranes consistent with the increased cholesterol to phospholipid ratio. The data indicate activation of a phospholipase A in ischemic mitochondria with the resulting accumulation of products of lipid hydrolysis. This conclusion further emphasizes the close similarity between the structural and functional consequences of ischemia in the intact animal and the effect on isolated mitochondria of the activation of the endogenous phospholipase A. In both cases the major functional alterations are attributable to changes in the permeability of the inner mitochondrial membrane induced by the accumulation of lysophospholipids.
    [Abstract] [Full Text] [Related] [New Search]