These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Investigation of the selectivity of hydrogen abstraction in the nonenzymatic formation of hydroxyeicosatetraenoic acids and leukotrienes by autoxidation. Author: Brash AR, Porter AT, Maas RL. Journal: J Biol Chem; 1985 Apr 10; 260(7):4210-6. PubMed ID: 2984196. Abstract: The biosynthetic conversions of arachidonic acid to hydroperoxyeicosatetraenoic acids (HPETEs) and the further conversion of leukotriene epoxides are accompanied by stereoselective hydrogen abstraction from the reaction substrate. Furthermore, this hydrogen removal has always been found to occur in fixed stereochemical relationship to carbon-oxygen chiral center(s) in the substrate or product. We have used stereospecifically labeled 10-3H-substrates with 14C internal standard to investigate whether the same relationships bear in HPETE and leukotriene formation during autoxidation. After autoxidation of labeled arachidonate, both the 8(R)- and 8(S)-HPETE enantiomers (resolved as diastereomer derivatives) and the 12(RS)-HPETE were observed to retain 41-47% 3H relative to the starting material. In autoxidative formation of leukotrienes from labeled 15(S)-HPETE the four main leukotrienes, including two derived from 14,15-leukotriene A4 hydrolysis, were observed to have retained an average of 45% 3H. Primary and secondary isotope effects were found to accompany these reactions. The results prove that stereorandom hydrogen abstraction occurs in autoxidation and that the hydrogen loss bears no stereochemical relationship to chiral oxygen center(s) in the HPETE product, (8(R) or 8(S], or the 15(S)-hydroperoxy substrate. We conclude that the chiral features of the biosynthetic reactions are a reflection of enzymatic control of stereochemistry. Nonetheless, the findings of primary and secondary isotope effects in autoxidation which are similar to those observed in the analogous biosynthetic reactions suggests that, except for stereochemical control, the autoxidative and enzymatic reactions may be mechanistically similar.[Abstract] [Full Text] [Related] [New Search]