These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Signal transmission in the catfish retina. II. Transmission to type-N cell.
    Author: Sakuranaga M, Naka K.
    Journal: J Neurophysiol; 1985 Feb; 53(2):390-410. PubMed ID: 2984348.
    Abstract:
    Responses from channel catfish type-N (sustained amacrine) cells were evoked either by step changes in illuminance, i.e. brightening or dimming from a mean illuminance, or by a white-noise modulated light stimulus. Current injected into the horizontal-cell soma or axon produced responses in type-N cells that were very similar to those produced by light stimuli. Light- and current-evoked responses had linear and second- and third-order nonlinear components; the former contributed 40-50%, whereas the latter contributed 20-30% to the total response. The remainder of the response could have been due to higher-order nonlinearities or to intrinsic as well as extrinsic noise. Nonlinear components in the light- and current-evoked responses were sharp transient peaks, which were prominent in white-noise-evoked responses, and oscillatory wavelets. The high-frequency components in the cell's response, which result from nonlinearity, were absent in the responses from bipolar and horizontal cells. The nonlinear responses were predicted by the second- and third-order kernels. The type-N cell response was complex because the response had both linear and nonlinear components, and because of the complexities of second- and, probably, third-order kernels. The cell's complex response reflects the complex nature of the cell's function as well as its synaptic organization.
    [Abstract] [Full Text] [Related] [New Search]