These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glucagon-like peptide-1 regulates brown adipose tissue thermogenesis via the gut-brain axis in rats. Author: Krieger JP, Santos da Conceição EP, Sanchez-Watts G, Arnold M, Pettersen KG, Mohammed M, Modica S, Lossel P, Morrison SF, Madden CJ, Watts AG, Langhans W, Lee SJ. Journal: Am J Physiol Regul Integr Comp Physiol; 2018 Oct 01; 315(4):R708-R720. PubMed ID: 29847161. Abstract: Endogenous intestinal glucagon-like peptide-1 (GLP-1) controls satiation and glucose metabolism via vagal afferent neurons (VANs). Recently, VANs have received increasing attention for their role in brown adipose tissue (BAT) thermogenesis. It is, however, unclear whether VAN GLP-1 receptor (GLP-1R) signaling affects BAT thermogenesis and energy expenditure (EE) and whether this VAN mechanism contributes to energy balance. First, we tested the effect of the GLP-1R agonist exendin-4 (Ex4, 0.3 μg/kg ip) on EE and BAT thermogenesis and whether these effects require VAN GLP-1R signaling using a rat model with a selective Glp1r knockdown (kd) in VANs. Second, we examined the role of VAN GLP-1R in energy balance during chronic high-fat diet (HFD) feeding in VAN Glp1r kd rats. Finally, we used viral transsynaptic tracers to identify the possible neuronal substrates of such a gut-BAT interaction. VAN Glp1r kd attenuated the acute suppressive effects of Ex4 on EE and BAT thermogenesis. Consistent with this finding, the VAN Glp1r kd increased EE and BAT activity, diminished body weight gain, and improved insulin sensitivity compared with HFD-fed controls. Anterograde transsynaptic viral tracing of VANs infected major hypothalamic and hindbrain areas involved in BAT sympathetic regulation. Moreover, retrograde tracing from BAT combined with laser capture microdissection revealed that a population of VANs expressing Glp1r is synaptically connected to the BAT. Our findings reveal a novel role of VAN GLP-1R signaling in the regulation of EE and BAT thermogenesis and imply that through this gut-brain-BAT connection, intestinal GLP-1 plays a role in HFD-induced metabolic syndrome.[Abstract] [Full Text] [Related] [New Search]