These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Overcoming stemness and chemoresistance in colorectal cancer through miR-195-5p-modulated inhibition of notch signaling.
    Author: Jin Y, Wang M, Hu H, Huang Q, Chen Y, Wang G.
    Journal: Int J Biol Macromol; 2018 Oct 01; 117():445-453. PubMed ID: 29852230.
    Abstract:
    MiR-195-5p has been shown to have a regulatory role in a variety of cancers. Its influence on colorectal cancer (CRC), however, has never been evaluated. In the present study, we found that miR-195-5p expression was significantly decreased as compared to paired, tumor-adjacent normal colorectal tissues. We demonstrated that miR-195-5p inhibited the stem-like capacity of CRC cells. We established 5-FU-resistant SW620 and HT-29 cell lines and performed a variety of functional assays following exposure to miR-195-5p and anti-miR-195-5p. In 5-FU-resistant cells, expression of miR-195-5p, P-gp and ABCG2 was decreased. MiR-195-5p significantly increased cancer cell apoptosis and decreased tumor sphere formation. In order to determine the mechanism by which miR-195-5p reduced CRC cell stemness and chemoresistance, we first identified potential targets of miR-195-5p. The 3' UTR of Notch signaling proteins Notch2 and RBPJ, which are essential genes in CRC cell stemness and chemoresistance, possessed double putative binding sites of miR-195-5p. qRT-PCR and western blot assays demonstrated significant decreases in Notch2 and RBPJ when CRC cell lines were exposed to miR-195-5p and significant increases when exposed to anti-miR-195-5p. These findings indicate that miR-195-5p has the potential to improve standard therapeutic approaches to CRC.
    [Abstract] [Full Text] [Related] [New Search]