These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An electrochemiluminescence biosensor for detection of CdkN2A/p16 anti-oncogene based on functional electrospun nanofibers and core-shell luminescent composite nanoparticles.
    Author: Wang X, Wang Y, Shan Y, Jiang M, Gong M, Jin X, Wang X, Cheng J.
    Journal: Talanta; 2018 Sep 01; 187():179-187. PubMed ID: 29853032.
    Abstract:
    An electrochemiluminescence (ECL) biosensor based on functional electrospun nanofibers for hybridization detection of specific CdkN2A/p16 anti-oncogene at trace level via binding luminescent composite nanoparticles for signal amplification has been developed. The carboxylated multiwalled carbon nanotubes (MWCNTs) doped polycaprolactam 6 (PA6) electrospun nanofibers (PA6-MWCNTs) was prepared via electrospinning, which served as the nanosized backbones for silica nanoparticles (SiO2) electrodeposition. The functional electrospun nanofibers (PA6-MWCNTs-SiO2) used as supporting scaffolds for single-stranded DNA1 (ssDNA1) immobilization can dramatically increase the amount of DNA attachment and the sensitivity of hybridization. The sandwich construction of ssDNA1-CdkN2A/p16 anti-oncogene -tri(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)32+)/silver nanoparticles (AgNPs) doped gold (Au) core-shell luminescent composite nanoparticles (RuAg@AuNPs)-labeled ssDNA2 (RuAg@Au-ssDNA2) was fabricated through a hybridization reaction. It was observed that high amount of doped Ru(bpy)32+ in RuAg@AuNPs successfully amplify the recognition signal by adding tripropylamine (TPrA). The change of ECL intensity was found to have a linear relationship in respect to the logarithm of the CdkN2A/p16 anti-oncogene concentrations in the wide range of 1.0 × 10-15~1.0 × 10-12 M, with a detection limit of 0.5 fM (S/N = 3) which is comparable or better than that in reported anti-oncogene assays. Excellent sensitivity and selectivity make the developed biosensor a promising tool for the detection of tumor biomarkers.
    [Abstract] [Full Text] [Related] [New Search]