These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: N-terminal and central domains of APC function to regulate branch number, length and angle in developing optic axonal arbors in vivo.
    Author: Jin T, Peng G, Wu E, Mendiratta S, Elul T.
    Journal: Brain Res; 2018 Oct 15; 1697():34-44. PubMed ID: 29856981.
    Abstract:
    During formation of neuronal circuits, axons navigate long distances to reach their target locations in the brain. When axons arrive at their target tissues, in many cases, they extend collateral branches and/or terminal arbors that serve to increase the number of synaptic connections they make with target neurons. Here, we investigated how Adenomatous Polyposis Coli (APC) regulates terminal arborization of optic axons in living Xenopus laevis tadpoles. The N-terminal and central domains of APC that regulate the microtubule cytoskeleton and stability of β-catenin in the Wnt pathway, were co-expressed with GFP in individual optic axons, and their terminal arbors were then imaged in tectal midbrains of intact tadpoles. Our data show that the APCNTERM and APCβ-cat domains both decreased the mean number, and increased the mean length, of branches in optic axonal arbors relative to control arbors in vivo. Additional analysis demonstrated that expression of the APCNTERM domain increased the average bifurcation angle of branching in optic axonal arbors. However, the APCβ-cat domain did not significantly affect the mean branch angle of arbors in tecta of living tadpoles. These data suggest that APC N-terminal and central domains both modulate number and mean length of branches optic axonal arbors in a compensatory manner, but also define a specific function for the N-terminal domain of APC in regulating branch angle in optic axonal arbors in vivo. Our findings establish novel mechanisms for the multifunctional protein APC in shaping terminal arbors in the visual circuit of the developing vertebrate brain.
    [Abstract] [Full Text] [Related] [New Search]