These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A Novel Deltaflexivirus that Infects the Plant Fungal Pathogen, Sclerotinia sclerotiorum, Can Be Transmitted Among Host Vegetative Incompatible Strains. Author: Hamid MR, Xie J, Wu S, Maria SK, Zheng D, Assane Hamidou A, Wang Q, Cheng J, Fu Y, Jiang D. Journal: Viruses; 2018 May 31; 10(6):. PubMed ID: 29857477. Abstract: Various mycoviruses have been isolated from Sclerotinia sclerotiorum. Here, we identified a viral RNA sequence contig, representing a novel virus, Sclerotinia sclerotiorum deltaflexivirus 2 (SsDFV2), from an RNA_Seq database. We found that SsDFV2 was harbored in the hypovirulent strain, 228, which grew slowly on potato dextrose agar, produced a few sclerotia, and could not induce typical lesions on detached rapeseed (Brassica napus) leaves. Strain 228 was also infected by Botrytis porri RNA Virus 1 (BpRV1), a virus originally isolated from Botrytis porri. The genome of SsDFV2 comprised 6711 nucleotides, excluding the poly (A) tail, and contained a single large predicted open reading frame encoding a putative viral RNA replicase. Phylogenetic analysis demonstrated that SsDFV2 is closely related to viruses in the family Deltaflexiviridae; however, it also differs significantly from members of this family, suggesting that it may represent a new species. Further we determined that SsDFV2 could be efficiently transmitted to host vegetative incompatible individuals by dual culture. To our best knowledge, this is the first report that a (+) ssRNA mycovirus can overcome the transmission limitations of the vegetative incompatibility system, a phenomenon that may facilitate the potential use of mycoviruses for the control of crop fungal diseases.[Abstract] [Full Text] [Related] [New Search]