These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development and Functional Characterization of Murine Tolerogenic Dendritic Cells.
    Author: Wei HJ, Letterio JJ, Pareek TK.
    Journal: J Vis Exp; 2018 May 18; (135):. PubMed ID: 29863666.
    Abstract:
    The immune system operates by maintaining a tight balance between coordinating responses against foreign antigens and maintaining an unresponsive state against self-antigens as well as antigens derived from commensal organisms. The disruption of this immune homeostasis can lead to chronic inflammation and to the development of autoimmunity. Dendritic cells (DCs) are the professional antigen-presenting cells of the innate immune system involved in activating naïve T cells to initiate immune responses against foreign antigens. However, DCs can also be differentiated into TolDCs that act to maintain and promote T cell tolerance and to suppress effector cells contributing to the development of either autoimmune or chronic inflammation conditions. The recent advancement in our understanding of TolDCs suggests that DC tolerance can be achieved by modulating their differentiation conditions. This phenomenon has led to tremendous growth in developing TolDC therapies for numerous immune disorders caused due to break in immune tolerance. Successful studies in preclinical autoimmunity murine models have further validated the immunotherapeutic utility of TolDCs in the treatment of autoimmune disorders. Today, TolDCs have become a promising immunotherapeutic tool in the clinic for reinstating immune tolerance in various immune disorders by targeting pathogenic autoimmune responses while leaving protective immunity intact. Although an array of strategies has been proposed by multiple labs to induce TolDCs, there is no consistency in characterizing the cellular and functional phenotype of these cells. This protocol provides a step-by-step guide for the development of bone marrow-derived DCs in large numbers, a unique method used to differentiate them into TolDCs with a synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid-difluoro-propyl-amide (CDDO-DFPA), and the techniques used to confirm their phenotype, including analyses of essential molecular signatures of TolDCs. Finally, we show a method to assess TolDC function by testing their immunosuppressive response in vitro and in vivo in a preclinical model of multiple sclerosis.
    [Abstract] [Full Text] [Related] [New Search]