These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Autocatalytic activation of C1r subcomponent of the first component of human complement. Author: Kasahara Y, Odai H, Takahashi K, Nagasawa S, Koyama J. Journal: J Biochem; 1985 Jan; 97(1):365-72. PubMed ID: 2987200. Abstract: Autoactivation of the proenzyme form of a subunit of the first component (C1r) was performed in the presence and absence of diisopropyl fluorophosphate (DFP). The time-course of autoactivation of zymogen C1r followed a sigmoidal curve and was accelerated by addition of the enzyme C1r and by increasing the concentration of C1r, suggesting that autoactivation of C1r consists of two intermolecular reactions, i.e. zymogen(C1r)- and enzyme(C1r)-catalyzed reactions. In the presence of 10 mM DFP, the enzyme-catalyzed autoactivation of C1r was completely inhibited, while the zymogen-catalyzed autoactivation still proceeded depending upon C1r concentration. These results suggested that the zymogen-catalyzed autoactivation of C1r is a DFP-insensitive second-order reaction and is mediated by an active site generated in a single chain C1r through a conformational change (Kassahara et al. (1982) FEBS lett. 141, 128-131). Based on these results, a possible reaction process of autoactivation of C1r was proposed, as follows: (formula; see text) where C1r represents a conformational isomer which catalyzes the autoactivation of C1r, and the rate constants, k2 and k3, are of second-order. Utilizing a computer, we simulated the autoactivation of C1r and found the above scheme to be a reasonable model of C1r autoactivation. Evidence which supports the formation of a conformational isomer of C1r, C1r, as an intermediate in its autoactivation was also obtained by a surface radiolabeling method.[Abstract] [Full Text] [Related] [New Search]