These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neuromagnetic Decoding of Simultaneous Bilateral Hand Movements for Multidimensional Brain-Machine Interfaces. Author: Belkacem AN, Nishio S, Suzuki T, Ishiguro H, Hirata M. Journal: IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1301-1310. PubMed ID: 29877855. Abstract: To provide multidimensional control, we describe the first reported decoding of bilateral hand movements by using single-trial magnetoencephalography signals as a new approach to enhance a user's ability to interact with a complex environment through a multidimensional brain-machine interface. Ten healthy participants performed or imagined four types of bilateral hand movements during neuromagnetic measurements. By applying a support vector machine (SVM) method to classify the four movements regarding the sensor data obtained from the sensorimotor area, we found the mean accuracy of a two-class classification using the amplitudes of neuromagnetic fields to be particularly suitable for real-time applications, with accuracies comparable to those obtained in previous studies involving unilateral movement. The sensor data from over the sensorimotor cortex showed discriminative time-series waveforms and time-frequency maps in the bilateral hemispheres according to the four tasks. Furthermore, we used four-class classification algorithms based on the SVM method to decode all types of bilateral movements. Our results provided further proof that the slow components of neuromagnetic fields carry sufficient neural information to classify even bilateral hand movements and demonstrated the potential utility of decoding bilateral movements for engineering purposes such as multidimensional motor control.[Abstract] [Full Text] [Related] [New Search]