These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Voltammetric aptasensor for bisphenol A based on the use of a MWCNT/Fe3O4@gold nanocomposite. Author: Baghayeri M, Ansari R, Nodehi M, Razavipanah I, Veisi H. Journal: Mikrochim Acta; 2018 Jun 07; 185(7):320. PubMed ID: 29881880. Abstract: The present study describes an electrochemical aptamer-based method for the determination of bisphenol A (BPA). It is making use of gold nanoparticles (AuNPs) immobilized on a conjugate between multiwalled carbon nanotubes and thiol-functionalized magnetic nanoparticles (MWCNT/Fe3O4-SH) that are modified with an aptamer. The nanocomposite was characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, elemental mapping analysis and energy dispersive X-ray diffraction. The aptasensor, typically operated at 0.20 V (vs. Ag/AgCl), has a linear response in the 0.1 to 8 nM BPA concentration range, a low detection limit (0.03 nM), and high sensitivity (86.43 μA nM-1 cm-2). Voltammetric experiments were performed by using the hexacyanoferrate redox system as an electrochemical probe. The results indicate that the presence of AuNPs, magnetic nanoparticles and MWCNTs results a synergistic electrochemical augmentation. The method is highly selective, sensitive, efficient and environmentally friendly. The method was successfully applied to the determination of BPA in spiked real samples. Graphical abstract Aptasensor fabricated by MWCNT/Fe3O4-SH@Au nanocomposite and anti-BPA aptamer. The conformation of aptamer change after BPA binding, triggering a decrease in the electron transfer of Fe(CN)63-/4- on the electrode surface. The observed decline was detectable as a function of BPA concentration.[Abstract] [Full Text] [Related] [New Search]