These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Exosomes derived from endothelial progenitor cells ameliorate acute lung injury by transferring miR-126.
    Author: Wu X, Liu Z, Hu L, Gu W, Zhu L.
    Journal: Exp Cell Res; 2018 Sep 01; 370(1):13-23. PubMed ID: 29883714.
    Abstract:
    Endothelial progenitor cell (EPC) has potential to attenuate pulmonary inflammation and injury. As a pivotal paracrine entity of stem cells, whether EPC-derived exosomes (EPC-Exos) contribute to acute lung injury (ALI) remains unknown. Exosomes were purified from conditional medium of EPCs, and then characterized by electron micrograph and immunoblotting. A model of ALI was induced by lipopolysaccharide (LPS) and then rats were transplanted with EPC-Exos. The underlying mechanisms of action of EPC-Exos were examined in vitro endothelial functional assays including the TEER, proliferation (CKK-8), angiogenesis and migration. A possible underlying mechanism was examined by western blotting and further animal studies. Administration of EPC-Exos ameliorated LPS-induced ALI and restored the in vivo pulmonary integrity. EPC-Exos enhanced the proliferation, migration and tube formation of the endothelial cells (ECs). Furthermore, we found that miR-126 was enriched in EPC-Exos and can be delivered onto ECs. Modification of EPCs through miR-126 knockdown can diminish their exosomes function in vitro, indicative of the abilities of EPC-Exos to protect against LPS were inherited by the horizontal shuttled miR-126. Luciferase reporter assays confirmed that miR-126 could target SPRED1. Additionally, the miR-126 transferred to target endothelial cells resulted in subsequent downregulation of SPRED1 and promoted RAF/ERK signaling pathways and subsequent improvement in endothelial cell function. Our study revealed a novel role of exosomal miRNAs in EPC-mediated therapy, suggesting that the clinical application of EPC-Exos might represent a strategy in ALI/ARDS.
    [Abstract] [Full Text] [Related] [New Search]