These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Quantitative and mechanistic aspects of the hydroperoxide-induced release of Ca2+ from rat liver mitochondria.
    Author: Frei B, Winterhalter KH, Richter C.
    Journal: Eur J Biochem; 1985 Jun 18; 149(3):633-9. PubMed ID: 2988954.
    Abstract:
    We have previously demonstrated in rat liver mitochondria a hydroperoxide-induced hydrolysis of pyridine nucleotides and release of Ca2+ [Lötscher, H. R., Winterhalter, K. H., Carafoli, E. & Richter, C. (1979) Proc. Natl Acad. Sci. USA 76, 4340-4344, and Lötscher, H. R., Winterhalter, K. H., Carafoli, E. & Richter, C. (1980) J. Biol. Chem. 255, 9325-9330]. Here we investigate pyridine nucleotide hydrolysis and Ca2+ release under conditions of minimized Ca2+ cycling and with smaller Ca2+ loads. The extent of pyridine nucleotide hydrolysis, measured by pyridine-nucleotide-derived nicotinamide release from intact mitochondria, and the Ca2+ release rate show a very similar sigmoidal dependence on the mitochondrial Ca2+ load. The hydrolysis of oxidized pyridine nucleotides is limited under non-cycling conditions. Whereas pyridine nucleotide hydrolysis as measured by nicotinamide release is extensive, net loss of mitochondrial pyridine nucleotides is observed only at relatively high Ca2+ loads. Our results indicate the ability of mitochondria to resynthesize pyridine nucleotides after hydrolysis. Neither a decrease of reduced, nor an increase of oxidized, mitochondrial glutathione favour Ca2+ release. From these and previous findings it is concluded that the hydroperoxide-induced Ca2+ release is triggered by a factor which is distal to the oxidation of mitochondrial pyridine nucleotides. Ca2+ release is stimulated when the movement of protons across the inner mitochondrial membrane is facilitated, giving evidence for the operation of the hydroperoxide-induced release pathway as a Ca2+/H+ antiport.
    [Abstract] [Full Text] [Related] [New Search]