These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Diffusion-weighted MRI in the evaluation of the thyroid nodule: Comparison between integrated-shimming EPI and conventional 3D-shimming EPI techniques. Author: Chen L, Sun P, Hao Q, Yin W, Xu B, Ma C, Stemmer A, Fu C, Wang M, Lu J. Journal: Oncotarget; 2018 May 25; 9(40):26209-26216. PubMed ID: 29899853. Abstract: This study aimed to evaluate whether a prototype echo planar imaging sequence with integrated-shimming (iShim-EPI) can improve image quality in the thyroid gland in comparison to 3D-volume shimming echo planar imaging (3D-Shim-EPI), and to compare ADC values derived from iShim-EPI with those of 3D-Shim-EPI. Twenty-one patients with thyroid disease were enrolled and underwent axial DWIs with iShim-EPI and 3D-Shim-EPI using a 3 Tesla magnetic resonance scanner in this prospective study. Both sets of DWI images were evaluated by two independent observers who identified susceptibility and ghost artifacts and evaluated the images' capacity to detect thyroid nodules using quantitative scores. The ADC values of the thyroid nodules and the normal thyroid gland were measured two times within a 4-week period. The reproducibility was evaluated using the intraclass correlation coefficient (ICC) and Bland-Altman plots. There were significant differences in the image quality scores for susceptibility (2.81 ± 0.37 vs. 1.93 ± 0.29, p < 0.001), ghost artifacts (2.95 ± 0.15 vs. 1.93 ± 0.29, p < 0.001) and the detectability of thyroid nodules (3.00 ± 0.00 vs. 2.55 ± 0.75, p = 0.008) between the iShim-EPI and 3D-Shim-EPI techniques, except for the ADC values of the thyroid nodules (1.607 ± 0.466×10-3 mm2/s vs. 1.561 ± 0.483 × 10-3 mm2/s, p = 0.184) and contralateral normal thyroid gland (1.295 ± 0.340 × 10-3 mm2/s vs.1.279 ± 0.411 × 10-3 mm2/s, p = 0.777). Both techniques demonstrated excellent agreement between the ADC values using the ICC (range, 0.963 to 0.999) and Bland-Altman plots. The iShim-EPI technique demonstrated significantly higher image quality compared with the conventional 3D-Shim-EPI technique, with no significant differences in the ADC values.[Abstract] [Full Text] [Related] [New Search]