These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A feasibility study on biological nitrogen removal (BNR) via integrated thiosulfate-driven denitratation with anammox. Author: Qian J, Zhang M, Wu Y, Niu J, Chang X, Yao H, Hu S, Pei X. Journal: Chemosphere; 2018 Oct; 208():793-799. PubMed ID: 29906753. Abstract: To exploit the advantages of less electron donor consumptions in partial-denitrification (denitratation, NO3- → NO2-) as well as less sludge production in autotrophic denitrification (AD) and anammox, a novel biological nitrogen removal (BNR) process through combined anammox and thiosulfate-driven denitratation was proposed here. In this study, the ratio of S2O32--S/NO3--N and pH are confirmed to be two key factors affecting the thiosulfate-driven denitratation activity and nitrite accumulation. Simultaneous high denitratation activity and substantial nitrite accumulation were observed at initial S2O32--S/NO3--N ratio of 1.5:1 and pH of 8.0. The optimal pH for the anammox reaction is determined to be 8.0. A sequential batch reactor (SBR) and an up-flow anaerobic sludge blanket (UASB) reactor were established to proceed the anammox and the high-rate thiosulfate-driven denitratation, respectively. Under the ambient temperature of 35 °C, the total nitrogen removal efficiency and capacity are 73% and 0.35 kg N/day/m3 in the anammox-SBR. At HRT of 30 min, the NO3- removal efficiency could achieve above 90% with the nitrate-to-nitrite transformation ratio of 0.8, implying the great potential to apply the thiosulfate-driven denitratation & anammox system for BNR with minimal sludge production. Without the occurrence of denitritation (NO2- → N2O → N2), theoretically no N2O could be emitted from this BNR system. This study could shed light on how to operate a high rate BNR system targeting to electron donor and energy savings as well as biowastes minimization and greenhouse gas reductions.[Abstract] [Full Text] [Related] [New Search]