These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Long non-coding RNA HOTAIR promotes osteoarthritis progression via miR-17-5p/FUT2/β-catenin axis.
    Author: Hu J, Wang Z, Shan Y, Pan Y, Ma J, Jia L.
    Journal: Cell Death Dis; 2018 Jun 15; 9(7):711. PubMed ID: 29907764.
    Abstract:
    Osteoarthritis (OA) is a chronic joint disease and hard to cure at present. Accumulating evidence suggests long noncoding RNA-HOTAIR (lncRNA-HOTAIR) plays important role in OA progression. However, the underlying molecular mechanism of HOTAIR in OA progression has not been well elucidated. In the present study, we identified that HOTAIR level was upregulated in OA cartilage tissues. High expression of HOTAIR was correlated with modified Mankin scale, extracellular matrix (ECM) degradation and chondrocytes apoptosis. The expression of miR-17-5p was down-regulated, while alpha-1, 2 fucosyltransferase 2 (FUT2) was increased in OA progression. Luciferase reporter and RNA immunoprecipitation (RIP) assays indicated that HOTAIR could directly bind to miR-17-5p and indirectly upregulate FUT2 level. Functional investigation revealed HOTAIR and FUT2 aggravated ECM degradation and chondrocytes apoptosis, and this effect could be reversed by miR-17-5p. Altered FUT2 modulated the activity of wnt/β-catenin pathway and HOTAIR/miR-17-5p also mediated wnt/β-catenin pathway through FUT2. Collectively, our findings indicated that HOTAIR/miR-17-5p/FUT2 axis contributed to OA progression via wnt/β-catenin pathway, which might provide novel insights into the function of lncRNA-driven in OA.
    [Abstract] [Full Text] [Related] [New Search]