These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Salvianolic acid A alleviate the brain damage in rats after cerebral ischemia-reperfusion through Nrf2/HO-1 pathway].
    Author: Zhang W, Song JK, Yan R, He GR, Zhang X, Zhou QM, Xiao ZY, Zhou WX, Du GH.
    Journal: Yao Xue Xue Bao; 2016 Nov; 51(11):1717-23. PubMed ID: 29908115.
    Abstract:
    The aim of present study is to investigate the protective effects and mechanism of salvianolic acid A (SAA) on cerebral ischemia-reperfusion injury in rats. The model was established with middle cerebral artery occlusion and reperfusion (MCAO/R) with ischemia for 1.5 h and reperfusion for 24 h in adult male SD rats. After the behavior assessment, TTC assay was used to calculate the infarct volume of rat brain; the distribution of Nrf2 in nuclear and cytoplasm and expression of HO-1 were detected by Western blot. The PC12 cells injury model was established with oxygen-glucose deprivation for 6 h and reintroduction for 24 h. Cell viability was determined with MTT assay, and the expression of Nrf2 and HO-1 were detected through immunofluorescence staining. The mechanisms were investigated in PC12 cells with Nrf2 knocking down by siRNA. SAA (10 and 20 mg·kg(-1)) significantly reduced the neuronal damage in MCAO/R model, and SAA(0.5 and 5 μmol·L(-1)) increased cell viability in PC12 cells injury model. Meanwhile, the nuclear translocation of Nrf-2 and the expression of HO-1 were increased in PC12 cell and rats brain. SAA exhibited anti-cerebral ischemia- reperfusion effects. The mechanism may be related to activation of Nrf2/HO-1 signaling pathway, which promotes the synthesis and nuclear translocation of Nrf2 to enhance the expression of the antioxidant protein HO-1.
    [Abstract] [Full Text] [Related] [New Search]