These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nutrient-limited conditions determine the responses of foliar nitrogen and phosphorus stoichiometry to nitrogen addition: A global meta-analysis. Author: You C, Wu F, Yang W, Xu Z, Tan B, Yue K, Ni X. Journal: Environ Pollut; 2018 Oct; 241():740-749. PubMed ID: 29908498. Abstract: To test the hypothesis that nutrient-limited conditions can determine the responses of nitrogen (N) and phosphorus (P) stoichiometry to N addition, a meta-analysis was conducted to identify the different responses of foliar N and P concentrations and N-to-P ratios to N addition under N limitation, N and P co-limitation and P limitation. N addition increased the foliar N-to-P ratios and N concentrations by 46.2% and 30.2%, respectively, under N limitation, by 18.7% and 19.7% under N and P co-limitation, and by 4.7% and 12.9% under P limitation. However, different responses of foliar P concentrations to N addition were observed under different nutrient limitations, and negative, positive, and neutral effects on P concentrations were observed under N limitation, P limitation and N and P co-limitation, respectively. Generally, the effects of N addition on N-to-P ratios and N concentrations in herbaceous plants were dramatically larger than those in woody plants (with the exception of the N-to-P ratio under N limitation), but the opposite situation was true for P concentrations. The changes in N-to-P ratios were closely correlated with the changes in N and P concentrations, indicating that the changes in both N and P concentrations due to N addition can drive N and P stoichiometry, but the relative sizes of the contributions of N and P varied greatly with different nutrient limitations. Specifically, the changes in N-to-P ratios may indicate a minimum threshold, which is consistent with the homeostatic mechanism. In brief, increasing N deposition may aggravate P limitation under N-limited conditions but improve P limitation under P-limited conditions. The findings highlight the importance of nutrient-limited conditions in the stoichiometric response to N addition, thereby advancing our ability to predict global plant growth with increasing N deposition in the future.[Abstract] [Full Text] [Related] [New Search]