These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interactions of body temperature and nutritional status on hypothalamo-pituitary-adrenal axis activity in pre-thermoregulatory eastern bluebird chicks (Sialia sialis). Author: Lynn SE, Kern MD. Journal: Gen Comp Endocrinol; 2018 Oct 01; 267():82-89. PubMed ID: 29908835. Abstract: Early life experiences can affect the function of the hypothalamo-pituitary-adrenal (HPA) axis of vertebrates, with potential fitness consequences later in life. In altricial species, for example, variation in parental behavior, e.g. brooding or feeding, can modify the activity of the HPA axis of the young by altering their exposure to noxious stimuli as the young develop in the nest. We have shown that a drop in the body temperature of eastern bluebird (Sialia sialis) chicks, such as occurs when females are away from the nest, elevates their blood corticosterone levels. If repeated during the early days of their development, cooling bouts also reduce the chicks' later corticosterone secretion in response to handling. Thus, variation in maternal behavior has the capacity to shape the function of the chicks' HPA axis. To better understand how maternal absence from the nest activates the HPA axis of bluebird chicks, we experimentally mimicked the cooling that occurs when the female is away from the nest, and investigated a) the age at which the HPA axis becomes capable of responding to cooling by increasing corticosterone secretion, b) whether corticosterone secretion remains elevated throughout long periods of cooling, and c) whether fasting (also potentially associated with maternal absence) interacts with cooling to affect corticosterone secretion. Cooling for 18 min significantly elevated circulating corticosterone levels of chicks as young as 4 days post-hatch, indicating that their HPA axis is sensitive to cooling very early in life. Corticosterone levels remained elevated throughout longer bouts of cooling. However, a 1-hr period of fasting had no effect on corticosterone secretion, regardless of whether chicks were cooled or not. Collectively, these data demonstrate that variation in maternal brooding behavior can substantially modify the corticosterone profiles of chicks during early postnatal development, and that chick temperature is likely the main driver of this.[Abstract] [Full Text] [Related] [New Search]