These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of fatty acids on Na+-Ca2+ exchange and Ca2+ permeability of cardiac sarcolemmal vesicles.
    Author: Philipson KD, Ward R.
    Journal: J Biol Chem; 1985 Aug 15; 260(17):9666-71. PubMed ID: 2991257.
    Abstract:
    We have previously reported that anionic phospholipids (Philipson, K.D., and Nishimoto, A.Y. (1984) J. Biol. Chem. 259, 16-19) and other anionic amphiphiles (Philipson, K.D. (1984) J. Biol. Chem. 259, 13999-14002) stimulate Na+-Ca2+ exchange in cardiac sarcolemmal vesicles. To further these studies, we have now investigated the effects of a variety of fatty acids on both Na+-Ca2+ exchange and passive Ca2+ permeability. Na+-Ca2+ exchange was stimulated by fatty acids by up to 150%. Unsaturated fatty acids were more potent than saturated fatty acids, and the stimulation was primarily due to a decrease in the apparent KM (Ca2+). There was a positive correlation between the ability of a fatty acid to stimulate Na+-Ca2+ exchange and to increase passive Ca2+ permeability. The methyl esters of fatty acids had no effects on either exchange or permeability indicating the importance of anionic charge. We conclude that the combination of local lipid disorder and anionic charge regulate Na+-Ca2+ exchange. Perturbations of the bilayer hydrophobic region and increased negative surface charge are both required for fatty acids to increase passive Ca2+ flux. Na+-Ca2+ exchange is stimulated when the ratio of membrane free fatty acid to phospholipid is about 5%. This level of fatty acid is achieved during 1 h of myocardial ischemia (Chien, K. R., Han, A., Sen, A., Buja, L. M., and Willerson, J. T. (1984) Circ. Res. 54, 313-322), indicating that ischemia could induce altered sarcolemmal Ca2+ transport due to fatty acid accumulation.
    [Abstract] [Full Text] [Related] [New Search]