These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: IRF6 and AP2A Interaction Regulates Epidermal Development.
    Author: Kousa YA, Fuller E, Schutte BC.
    Journal: J Invest Dermatol; 2018 Dec; 138(12):2578-2588. PubMed ID: 29913133.
    Abstract:
    Variants in IRF6 can lead to Van der Woude syndrome and popliteal pterygium syndrome. Furthermore, genes upstream and downstream of IRF6, including GRHL3 and TP63, are also associated with orofacial clefting. Additionally, a variant in an enhancer (MCS9.7) that regulates IRF6 is associated with risk for isolated orofacial clefting. This variant (rs642961) abrogates AP2A protein binding at MCS9.7. Here, we found that AP2A protein regulates MCS9.7 enhancer activity in vivo and IRF6 protein expression in epidermal development. In addition, loss of IRF6 leads to supra-basal expression of AP2A protein. Finally, using an IRF6 allelic series, we found that either increasing or decreasing IRF6 protein expression can destabilize AP2A protein expression in vivo. These data suggest that IRF6 regulates AP2A protein level in epidermal development. Therefore, we conclude that IRF6 and TFAP2A are part of a genetic regulatory network that is critical in epithelial development, with implications for both orofacial and cutaneous tissues. Our work provides in vivo, functional data to explain the relationship between AP2A protein binding and the MCS9.7 enhancer in orofacial clefting. This work is important because the MCS9.7 enhancer element contains a variant that abrogates AP2A protein binding and increases risk for orofacial clefting worldwide.
    [Abstract] [Full Text] [Related] [New Search]