These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of forskolin on maintenance of meiotic arrest and stimulation of cumulus expansion, progesterone and cyclic AMP production by pig oocyte-cumulus complexes. Author: Racowsky C. Journal: J Reprod Fertil; 1985 May; 74(1):9-21. PubMed ID: 2991512. Abstract: Forskolin induced biphasic responses of cumulus progesterone secretion (determined by RIA) and cumulus mass expansion, with maximal increases occurring at 6.25 microns, and subsequent dose-dependent declines observed up to 10 microns-forskolin. The diterpene induced dose-dependent responses in the % germinal vesicle (GV) of cumulus-enclosed and denuded oocytes (0.23 and 4.84 microns maintained 50% GV, respectively), it increased the cAMP content of cumulus masses, cumulus-enclosed oocytes and denuded oocytes, and increased heterologous metabolic coupling (determined by measuring transfer of radiolabelled uridine marker from the cumulus mass to the oocyte). A significant correlation was established between the amount of cAMP within the cumulus mass and that in the corresponding oocyte (r = 0.58). Above 10 microns-forskolin, the cAMP content of cumulus-enclosed oocytes was significantly greater than that of denuded oocytes (100 microns-forskolin: 0.118 +/- 0.082 and 0.006 +/- 0.001 pmol/oocyte respectively; P less than 0.001, paired t test), and the enhanced arresting action of forskolin upon cumulus-enclosed oocytes was correlated with an increase in intra-oocyte cAMP. Maintenance of meiotic arrest and stimulation of oocyte-cumulus cAMP were reversible. During 48 h of culture, the arresting action of forskolin (50 microns) was maintained on denuded and cumulus-enclosed oocytes but heterologous metabolic coupling significantly declined. The cAMP content of the cumulus mass and corresponding oocyte significantly declined, while that of the denuded oocyte remained unchanged. The cAMP content of arrested cumulus-enclosed oocytes cultured for 48 h in 50 microns-forskolin was significantly greater than that of maturing oocytes cultured for 24 h in 50 microns-forskolin and then for 24 h in control medium. These results show that (1) forskolin stimulates progesterone secretion and expansion of pig cumuli, but at high doses the drug inhibits these functions while cumulus cAMP remains elevated; (2) when heterologous metabolic coupling is maintained, cumulus cAMP may be transferred to the oocyte; (3) the pig oocyte can synthesize cAMP; and (4) forskolin-maintenance of meiotic arrest of pig oocytes is correlated with elevated intra-oocyte cAMP but a 'factor' other than cAMP is also involved in maintenance of meiotic arrest.[Abstract] [Full Text] [Related] [New Search]