These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Two tandemly organized human genes encoding the T-cell gamma constant-region sequences show multiple rearrangement in different T-cell types.
    Author: Lefranc MP, Rabbitts TH.
    Journal: Nature; ; 316(6027):464-6. PubMed ID: 2991773.
    Abstract:
    The recent detailed analysis of genes that undergo rearrangement in T cells has shown that the T-cell receptor genes encoding alpha- and beta-chains are involved in specific alterations in T-cell DNA analogous to the immunoglobulin genes. A third type of gene, designated gamma, has been isolated from mouse cytotoxic T lymphocytes, and evidence suggest that the mouse displays very limited diversity in this gene system, having only three variable-region (V) genes and three constant-region (C) genes. The function of the so-called T-cell gamma gene is unknown. We have isolated genomic genes encoding the human homologue of the mouse T-cell gamma gene; as there is no evidence that this T-cell rearranging gene is anything to do with the T3 molecule, we have designated the human T-cell rearranging gene as TRG gamma (ref. 13), to avoid confusion with the T3 gamma-chain, and have shown that the gene locus maps to chromosome 7 in humans. We now report that human DNA contains two tandemly arranged TRG gamma constant-region genes about 16 kilobases apart. These two genes show multiple rearrangement patterns in a variety of T cells, including helper and cytotoxic/suppressor type, as well as in all forms of T-cell leukaemia. Our results indicate variability of this T-cell gene system in man compared with the analogous system in mouse.
    [Abstract] [Full Text] [Related] [New Search]