These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rate of transmembrane electron transfer in chromaffin-vesicle ghosts. Author: Harnadek GJ, Ries EA, Njus D. Journal: Biochemistry; 1985 May 21; 24(11):2640-4. PubMed ID: 2992572. Abstract: The chromaffin vesicle of the adrenal medulla contains a transmembrane electron carrier that may provide reducing equivalents for dopamine beta-hydroxylase in vivo. This electron-transfer system can be assayed by trapping ascorbic acid inside resealed membrane vesicles (ghosts), adding an external electron acceptor such as ferricytochrome c or ferricyanide, and following the reduction of these acceptors spectrophotometrically. Cytochrome c reduction is more rapid at high pH and is proportional to the amount of chromaffin-vesicle ghosts, at least at low ghost concentrations. At pH 7.0, ghosts loaded with 100 mM ascorbic acid reduce 60 microM cytochrome c at a rate of 0.035 +/- 0.010 mu equiv min-1 (mg of protein)-1 and 200 microM ferricyanide at a rate of 2.3 +/- 0.3 mu equiv min-1 (mg of protein)-1. The rate of cytochrome c reduction is accelerated to 0.105 +/- 0.021 mu equiv min-1 (mg of protein)-1 when cytochrome c is pretreated with equimolar ferrocyanide. Pretreatment of cytochrome c with ferricyanide also causes a rapid rate of reduction, but only after an initial delay. The ferrocyanide-stimulated rate of cytochrome c reduction is further accelerated by the protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), probably because FCCP dissipates the membrane potential generated by electron transfer. These rates of electron transfer are sufficient to account for electron transfer to dopamine beta-hydroxylase in vivo and are consistent with the mediation of electron transfer by cytochrome b-561.[Abstract] [Full Text] [Related] [New Search]