These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evaluation of sparing organs at risk (OARs) in left-breast irradiation in the supine and prone positions and with deep inspiration breath-hold. Author: Saini AS, Hwang CS, Biagioli MC, Das IJ. Journal: J Appl Clin Med Phys; 2018 Jul; 19(4):195-204. PubMed ID: 29927027. Abstract: PURPOSE: To compare doses to organs at risk (OARs) for left-sided whole-breast radiation therapy with comparable planning target volume (PTV) coverage using three techniques: free breathing in a supine position (SFB), deep inspirational breath-hold in a supine position (SDIBH), and free breathing in prone position (PFB). MATERIALS AND METHODS: Thirty-three patients with left-sided early-stage breast cancer underwent CT simulation following SFB, SDIBH, and PFB protocols for whole-breast radiation therapy. One radiation oncologist contoured the breast PTV, heart, left ventricle (LV), and left anterior descending artery (LAD). Treatment plans were optimized using field-in-field technique with the AAA algorithm. Each plan was optimized to provide identical coverage to the PTV such that a reasonable comparison for OAR dosimetry could be evaluated. All plans were prescribed 42.56 Gy in 16 fractions to the left-breast PTV. RESULTS: The mean dose in SFB for the heart, LV, and LAD was 1.92, 3.19, and 21.73 Gy, respectively, which were significantly higher than the mean dose in SDIBH for the heart (1.08 Gy, P ≤ 0.0001), LV (1.50 Gy, P ≤ 0.0001), and LAD (6.3 Gy, P ≤ 0.0001) and in PFB for the heart (0.98 Gy, P ≤ 0.0001), LV (1.34 Gy, P ≤ 0.0001), and LAD (6.57 Gy, P ≤ 0.0001). Similar findings were noted for the cardiac components in SFB for V2.5, V5, V10, V20, and V30 compared with values in SDIBH and PFB. The mean dose for the left lung in PFB was 0.61 Gy that was significantly lower than in SFB (5.63 Gy, P ≤ 0.0001) and SDIBH (5.54 Gy, P ≤ 0.0001). Mean dose and dosimetric values for each OAR increased in SFB and SDIBH for patients with a large breast volume compared with values for patients with a small breast volume. CONCLUSIONS: SFB results in higher heart, LAD, and LV doses than the other techniques. Both PFB and SDIBH are more advantageous for these OARs irrespective of breast volume. PFB results in significantly lower lung doses than SFB and SDIBH. PFB always provided better results than SFB for the heart, LV, LAD, and lung. This conclusion contrasts with some published studies concluding that the prone position has no benefit for heart sparing.[Abstract] [Full Text] [Related] [New Search]