These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lactic acid induces lactate transport and glycolysis/OXPHOS interconversion in glioblastoma.
    Author: Duan K, Liu ZJ, Hu SQ, Huo HY, Xu ZR, Ruan JF, Sun Y, Dai LP, Yan CB, Xiong W, Cui QH, Yu HJ, Yu M, Qin Y.
    Journal: Biochem Biophys Res Commun; 2018 Sep 05; 503(2):888-894. PubMed ID: 29928884.
    Abstract:
    The Warburg effect is a dominant phenotype of most tumor cells. Recent reports have shown that the Warburg effect can be reprogrammed by the tumor microenvironment. Lactic acidosis and glucose deprivation are the common adverse microenvironments in solid tumor. The metabolic reprogramming induced by lactic acid and glucose deprivation remains to be elucidated in glioblastoma. Here, we show that, under glucose deprivation, lactic acid can preserve high ATP levels and resist cell death in U251 cells. At the same time, we find that MCT1 and MCT4 are significantly highly expressed. The metabolic regulation factor HIF-1α decreased and C-MYC increased. Nuclear respiratory factor 1 (NRF1) and oxidative phosphorylation (OXPHOS)-related proteins (NDUFB8, ND1) are all distinctly increased. Therefore, lactic acid can induce lactate transport and convert the dominant Warburg effect to OXPHOS. Through bioinformatics analysis, the high expression of HIF-1α, MCT1 or MCT4 indicate a poor prognosis in glioblastoma. In addition, in glioblastoma tissue, HIF-1α, MCT4 and LDH are highly expressed in the interior region, and their expression is decreased in the lateral region. MCT1 can not be detected in the interior region and is highly expressed in the lateral region. Hence, different regions of glioblastoma have diverse energy metabolic pathways. Glycolysis occurs mainly in the interior region and OXPHOS in the lateral region. In general, lactic acid can induce regional energy metabolic reprogramming and assist tumor cells to adapt and resist adverse microenvironments. This study provides new ideas for furthering understanding of the metabolic features of glioblastoma. It may promote the development of new therapeutic strategies in GBM.
    [Abstract] [Full Text] [Related] [New Search]