These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dopamine-beta-hydroxylase inhibition acutely stimulates rats hypothalamic noradrenaline and dopamine neuronal activity as assessed from metabolic ratios and circulating glucose and ACTH responses.
    Author: Smythe GA, Bradshaw JE, Gleeson RM, Nicholson MV.
    Journal: Life Sci; 1985 Sep 02; 37(9):841-7. PubMed ID: 2993777.
    Abstract:
    Because central noradrenaline neuronal activity is tonically inhibited by noradrenaline (NA) itself via an action at prejunctional alpha 2-adrenoceptors, it was hypothesised that the blockade of central NA synthesis following acute dopamine-beta -hydroxylase (DBH) inhibition might primarily deplete prejunctional NA levels and result in an increase in central NA neuronal activity through reduced NA autoinhibition. This hypothesis was tested in the rat following the acute administration of the DBH inhibitors diethyldithiocarbamate (DDC) and cysteamine (CSH). Computerised gas chromatography/mass spectrometry was used to precisely measure the hypothalamic levels of NA and dopamine (DA) together with those of their primary neuronal metabolites dihydroxyphenylethyleneglycol (DHPG) and dihydroxyphenylacetic acid (DOPAC), respectively. Both DDC (at 4 h) and CSH (at 30 min.) caused approximately a 50% reduction of hypothalamic NA concentrations. However this was associated with marked and highly significant increases in hypothalamic DHPG levels (by 50-100%) and in the hypothalamic ratio DHPG/NA. Also, when measured after CSH, the hypothalamic levels of the DHPG metabolite 3-methoxy-4-hydroxyphenylethyleneglycol were highly significantly increased. Consistent with increased DA neuronal activity, both DBH inhibitors raised DA and DOPAC levels and also the ratio DOPAC/DA in the hypothalami of treated rats and markedly suppressed serum prolactin levels (all p less than 0.01). The rise in hypothalamic concentrations of DHPG indicates that an increase in hypothalamic NA neuronal activity occurs following DBH inhibition. Significant elevations of blood glucose, corticosterone and ACTH were also observed after DBH inhibition. As we have previously demonstrated that increased central NA activity is associated with elevations of blood glucose, corticosterone and ACTH, these data provide further evidence for a functional increase in central NA activity caused by acute DBH inhibition. It is proposed that the increase in hypothalamic NA activity after DBH inhibition results from a primary depletion of the prejunctional alpha 2-active autoregulatory pool of NA.
    [Abstract] [Full Text] [Related] [New Search]