These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Successive and Specific Detection of Hg2+ and I- by a DNA@MOF Biosensor: Experimental and Simulation Studies. Author: Hu PP, Liu N, Wu KY, Zhai LY, Xie BP, Sun B, Duan WJ, Zhang WH, Chen JX. Journal: Inorg Chem; 2018 Jul 16; 57(14):8382-8389. PubMed ID: 29943970. Abstract: A 2D metal-organic framework (MOF) of {[Cu(Dcbb)(Bpe)]·Cl} n (1, H2DcbbBr = 1-(3,5-dicarboxybenzyl)-4,4'-bipyridinium bromide, Bpe = trans-1,2-bis(4-pyridyl)ethylene)) has been prepared. MOF 1 associates with the thymine-rich (T-rich), single-stranded probe DNA (ss-DNA, denoted as P-DNA) labeled with fluorophore FAM (FAM = carboxyfluorescein) and quenches the FAM emission to give a nonemissive P-DNA@1 hybrid (off state). The P-DNA in the hybrid subsequently captures the Hg2+ to give a rigid double-stranded DNA featuring T-Hg2+-T motif (ds-DNA@Hg2+) and detach from MOF 1, triggering the recovery of the FAM fluorescence (on state). Upon subsequent addition of I-, Hg2+ was further sequestrated from the ds-DNA@Hg2+ duplex, driven by the stronger Hg-I coordination. The released P-DNA is resorbed by MOF 1 to regain the initial P-DNA@1 hybrid (off state). The P-DNA@1 sensor thus detects Hg2+ and I- sequentially via a fluorescence "off-on-off" mechanism. The sensor is highly selective and sensitive, yielding detection limits of 3.2 and 3.3 nM, respectively. The detection process was conformed by circular dichroism (CD) and the detection mechanism was verified by fluorescence anisotropy, binding constant, and simulation of the binding free energy at each stage.[Abstract] [Full Text] [Related] [New Search]