These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of myosin phosphorylation in contractility of a platelet aggregate.
    Author: Bromberg ME, Sevy RW, Daniel JL, Salganicoff L.
    Journal: Am J Physiol; 1985 Sep; 249(3 Pt 1):C297-303. PubMed ID: 2994487.
    Abstract:
    The relationship between tension and myosin 20,000-Da light chain phosphorylation in intact nonmuscle cells was investigated using a preparation of thrombin-activated, irreversibly aggregated platelets known as the platelet strip. Steady-state levels of tension generated by the platelet strip were found to be linearly related to the level of myosin phosphorylation. This relationship was observed during dose-dependent relaxation induced by the adenylate cyclase activators prostaglandin (PG) E1 and PGI2, and during contraction induced by ADP, epinephrine, and the prostaglandin endoperoxide analogue U-46619, which did not appreciably alter the basal level of adenosine 3',5'-cyclic monophosphate in the preparation. The fully relaxed platelet strip, in the absence of external Ca2+, was associated with a level of 12% light chain phosphorylation, which increased to 72% on maximal contraction. During both relaxation and contraction, changes in myosin phosphorylation were also found to precede or coincide with tension changes. Furthermore, steady-state contraction induced by ADP was associated with a maintained elevation in the level of myosin phosphorylation. These results support the concept that myosin phosphorylation is an important regulatory mechanism for contractility in platelets.
    [Abstract] [Full Text] [Related] [New Search]