These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Wormlike micelle formation of novel alkyl-tri(ethylene glycol)-glucoside carbohydrate surfactants: Structure-function relationships and rheology.
    Author: Moore JE, McCoy TM, de Campo L, Sokolova AV, Garvey CJ, Pearson G, Wilkinson BL, Tabor RF.
    Journal: J Colloid Interface Sci; 2018 Nov 01; 529():464-475. PubMed ID: 29945017.
    Abstract:
    Carbohydrates are appealing non-ionic surfactant head-groups as they are naturally abundant, generally biocompatible and biodegradable, and readily functionalized. Here, seven novel carbohydrate based surfactants (CBS) have been synthesized that contain a tri-ethylene glycol (TEG) linker between a glucose head-group and alkyl tail-group, with linear saturated (C8-18) and unsaturated (C18:1) alkyl chains. The aqueous adsorption and self-assembly of these surfactants was explored using tensiometry and small- and ultra-small-angle neutron scattering (SANS and USANS). With SANS we observed elongation from spherical to cylindrical micelles with increasing alkyl chain length. C16 and C18 chains exhibited pronounced Krafft points, yet formed worm-like micelles as single components upon heating to 43 and 48 °C respectively. The introduction of mono-unsaturation in the form of a C18:1 chain reduced the Krafft point and gave a surfactant that produced worm-like micelles in water without additives at room temperature. We also observed micellar elongation for C12 and C14 chains at 50 °C due to dehydration of the TEG linker. The room temperature worm-like micelles were further characterized using rheo-SANS and rheology, revealing the C18:1 surfactant to exhibit near ideal Maxwell behavior at low concentrations (2.9 wt.%). These results provide insight into structure-function relationships for CBS, and demonstrate a promising molecular candidate for the formation of viscoelastic worm-like micellar solutions.
    [Abstract] [Full Text] [Related] [New Search]