These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transient proton inflows during illumination of anaerobic Halobacterium halobium cells.
    Author: Helgerson SL, Stoeckenius W.
    Journal: Arch Biochem Biophys; 1985 Sep; 241(2):616-27. PubMed ID: 2994571.
    Abstract:
    In Halobacterium halobium strain R1 containing both bacteriorhodopsin (bR) and halorhodopsin (hR), the light-driven proton uptake has been experimentally resolved into three transient inflows which are superimposed on the larger proton outflow. Under anaerobic conditions the early proton uptake consists of two components: (i) an inflow which can be blocked using the ATPase inhibitor, Dio-9, and (ii) an inflow which can be abolished by low concentrations (less than 125 nM) of triphenyltin chloride (TPT) with no inhibition of ATP synthesis. At pH 6 these two inflows are approximately equal in magnitude and duration. Measurements of buffering capacity and internal pH indicate that Dio-9 does not alter the passive proton-hydroxyl permeability of the cell membrane and that TPT at these low concentrations slightly decreases it. At later times of illumination (iii) another transient light-driven proton inflow occurs. This inflow is most evident during the first illumination after cells have been stored for extended times in the dark. The internal potassium concentration is not changed by storage, but apparently sodium is taken up, and we attribute the third inflow to sodium extrusion in exchange for protons. These results demonstrate the existence of three distinct triggered secondary proton inflows through the cell membrane. The proton inflow, which can be inhibited by Dio-9, correlates with proton-dependent ATP synthesis. The second inflow, which disappears in the presence of low TPT concentrations, is a passive proton uptake through an otherwise unidentified channel in response to electrogenic chloride pumping by bacteriorhodopsin and/or halorhodopsin. The third system correlates with the Na+/H+ antiporter function that has been demonstrated in H. halobium cell envelope vesicles. In contrast to observations on hR-containing vesicles, which can develop substantial Cl- gradients, the electroneutral OH-/Cl- exchange function can be demonstrated in intact cells only at TPT concentrations greater than 500 nM.
    [Abstract] [Full Text] [Related] [New Search]