These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Potentials of cocoa pod husk-based compost on Phytophthora pod rot disease suppression, soil fertility, and Theobroma cacao L. growth. Author: Doungous O, Minyaka E, Longue EAM, Nkengafac NJ. Journal: Environ Sci Pollut Res Int; 2018 Sep; 25(25):25327-25335. PubMed ID: 29946842. Abstract: Cocoa black pod disease caused by Phytophthora megakarya and reduced soil fertility are major constraints to cocoa production resulting in high yield losses. In the absence of effective control measures and constraints related to the use of chemical fungicides and fertilizers, there is a need to develop additional and sustainable disease and fertilization management strategies. With the lack of studies related to the use of compost in cocoa cultivation, the present study aims to evaluate the potential of cocoa pod husk (CPH)-based compost as a soil amendment to reduce the severity of cocoa black pod disease and enhance plant growth. In vitro antagonism test showed that compost water extracts (CWE) reduced mycelial growth with inhibition rate reaching 100% associated with microorganisms. Disease score of cocoa plantlets grown on compost-amended soils significantly reduced compared to plantlets grown on non-amended soil (control). All compost rates tested significantly increased populations of actinomycetes and fungi and biological activity in the soil. Compost application increased soil pH and majority of the essential elements but decreased Al content, which is toxic to cocoa growth in acidic soils. Soil application of compost at the dose of 20% (v/v) significantly increased stem length and number of leaves compared to the control. This study shows that CPH-based compost can not only improve soil fertility and cocoa growth but also reduce cocoa black pod disease severity by direct effects on inoculums level in the soil and by inducing resistance in the plant.[Abstract] [Full Text] [Related] [New Search]