These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vitro modification of cholesterol content of rat liver microsomes. Effects upon membrane 'fluidity' and activities of glucose-6-phosphatase and fatty acid desaturation systems.
    Author: Garda HA, Brenner RR.
    Journal: Biochim Biophys Acta; 1985 Sep 25; 819(1):45-54. PubMed ID: 2994732.
    Abstract:
    The cholesterol content of rat liver microsomal membranes was modified in vitro by incubating microsomes and cytosol with liposomes prepared by sonication of microsomal lipids and cholesterol. In this way, the cholesterol to phospholipid molar ratio was increased from 0.11-0.13 in untreated microsomes to a maximal of 0.8 in treated ones. Cholesterol incorporation in microsomes produced an increase in the diphenyl-hexatriene steady-state fluorescence anisotropy and a decrease in the efficiency of pyrene-excimer formation which indicated a decrease in the rotational and translational mobility, respectively, of these probes in the membranes lipid phase. Cholesterol incorporation in microsomes did not affect significantly the glucose-6-phosphatase activity in 0.1% Triton X-100 totally disrupted microsomes, but diminished the glucose-6-phosphatase activity of 'intact' microsomes. This indicates that possibly the glucose 6-phosphate translocation across the microsomal membrane is impeded by an increase in the membrane apparent 'microviscosity'. Cholesterol incorporation in microsomes decreased NADH-cytochrome c reductase without affecting NADH-ferricyanide reductase activity. The delta 9 desaturation reaction rate was enhanced by cholesterol incorporation at low but not at high palmitic acid substrate concentration. delta 5 and delta 6 desaturase reaction-rates were increased both at low and high fatty acid substrate concentrations. These results suggest that a mechanism involving fatty acid desaturase enzymes, might exist to self-regulate the microsomal membrane lipid phase 'fluidity' in the rat liver.
    [Abstract] [Full Text] [Related] [New Search]