These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bicruciate lesion biomechanics, Part 1-Diagnosis: translations over 15 mm at 90° of knee flexion are indicative of a complete tear. Author: de Carvalho RT, Franciozi CE, Itami Y, McGarry MH, Ingham SJM, Abdalla RJ, Tibone JE, Lee TQ. Journal: Knee Surg Sports Traumatol Arthrosc; 2019 Sep; 27(9):2927-2935. PubMed ID: 29947839. Abstract: PURPOSE: Understanding the pathomechanics of a bicruciate injury (BI) is critical for its correct diagnosis and treatment. The purpose of this biomechanical study aims to quantify the effects of sequential sectioning of the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) bundles on knee laxity. METHODS: Twelve cadaveric knees (six matched pairs) were used. Knee laxity measurements consisted of neutral tibial position, anterior-posterior translation, internal-external rotation, and varus-valgus angulation in different conditions: intact, ACL cut, incomplete BI (divided into two groups: anterolateral (AL) bundle intact or posteromedial (PM) bundle intact) and complete bicruciate tear. Data were collected using a Microscribe system at 0°, 30°, 60°, and 90° of knee flexion. RESULTS: In comparison to the intact knees, incomplete BI and complete BI showed a significant increase of total antero-posterior tibial translation. The largest significant increase was observed at 90° of flexion after a complete bicruciate resection (p < 0.001). A threshold difference greater than 15 mm from the intact could be used to identify a complete BI from an incomplete BI evaluating the total antero-posterior translation at 90°. All sectioned states had significant increases compared with the intact condition in internal-external rotation and varus-valgus stability at all tested flexion angles. CONCLUSION: Both incomplete and complete BI led to an important AP translation instability at all angles; however, full extension was the most stable position at all injured models. Total antero-posterior translation at 90° of knee flexion over 15 mm, in comparison to the intact condition, was indicative of a complete BI. Since the appropriate assessment of a combined ACL and PCL lesion remains a challenge, this study intends to assist its diagnosis. As BI's main antero-posterior instability occurred at 90°, a total antero-posterior drawer test is proposed to evaluate BI in the clinical setting. Total antero-posterior translation at 90° > 15 mm, in comparison to the intact condition or the contra-lateral non-injured knee, can be used to identify a complete from an incomplete BI.[Abstract] [Full Text] [Related] [New Search]