These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glutamic acid assisted phyto-management of silver-contaminated soils through sunflower; physiological and biochemical response. Author: Farid M, Ali S, Zubair M, Saeed R, Rizwan M, Sallah-Ud-Din R, Azam A, Ashraf R, Ashraf W. Journal: Environ Sci Pollut Res Int; 2018 Sep; 25(25):25390-25400. PubMed ID: 29951756. Abstract: Phytoremediation is a cost-effective and eco-friendly technique for the removal of heavy metal-contaminated soils and water. The less availability and mobility of heavy metals in medium decreased the efficiency of this technique. The mobility and availability of these metals in the medium can be enhanced by the addition of organic chelators. The present study was conducted to investigate the possibility of glutamic acid (GA) in improving silver (Ag) phytoextraction by sunflower (Helianthus annuus L.). Different concentrations of Ag and GA were supplied in solution form in different combinations after defined intervals. Results depicted that increasing concentration of Ag significantly reduced the plant biomass, photosynthetic pigments, and antioxidant enzyme activities (like catalase, peroxidase, ascorbate, peroxidase, superoxide dismutase). Furthermore, Ag stress increased the Ag concentration and the production of reactive oxygen species (ROS) in sunflower plants. The addition of GA alleviated the Ag-induced toxicity in plants and enhanced Ag concentration and accumulation in sunflower. The addition of GA enhanced Ag accumulation in sunflower roots by 70, 79, 58, and 66% at 0-, 100-, 250-, and 500-μM Ag treatments, respectively, as compared to control plants. In conclusion, the results showed that Ag significantly reduced the physiological and biochemical attributes in term of reduced growth of sunflower and the addition of GA alleviated the Ag induced toxicity and enhanced Ag uptake. The results suggested that sunflower can be used as hyper-accumulator plant for the removal of Ag under GA. Further studies are required to understand the role of GA at gene and microscopic level in plants.[Abstract] [Full Text] [Related] [New Search]