These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Steroids, intracellular sodium levels, and Na+/K+-ATPase regulation.
    Author: Rayson BM, Gupta RK.
    Journal: J Biol Chem; 1985 Oct 15; 260(23):12740-3. PubMed ID: 2995388.
    Abstract:
    In outer medullary kidney tubules, both specific mineralocorticoid, and specific glucocorticoid Na+/K+-ATPase activation in vitro were inhibitable by amiloride, an inhibitor of a number of Na+-transporting mechanisms (Bentley, P.J. (1968) J. Physiol. (Lond.) 195, 317-330; Kinsella, J. L., and Aronson, P. S. (1980) Am. J. Physiol. 238, F461-F469). In addition, dexamethasone raised, whereas amiloride reduced, intracellular Na+ levels. These observations are consistent with the possibility that the steroidal responses are mediated by changes in intracellular Na+ ion activity. However, when intracellular Na+ levels were increased by the incubation of tubule segments in medium containing ouabain (10(-4) M), no Na+/K+-ATPase activation was observed, over incubation periods of up to 6 h. As mineralocorticoid and glucocorticoid effects are maximal within 2 h (Rayson, B.M., and Lowther, S.O. (1984) Am. J. Physiol. 246, F656-F662), these results suggest that the Na+ ion per se does not mediate the steroidal effects observed, directly. Incubation of tubule segments in medium containing 10(-4) M ouabain, at 37 degrees C, for longer periods (18 h), however, did indeed increase Na+/K+-ATPase activity, markedly. Thus, a potential homeostatic mechanism was demonstrable, where a chronic increase in intracellular Na+ level, measured after 2-4 h of treatment, resulted in an increase in Na+/K+-ATPase activity, such that the intracellular Na+ level was restored after 18-20 h of incubation to one not significantly different from the control value. This mechanism, however, appears to be clearly distinguishable from that which mediates steroidal Na+/K+-ATPase activation.
    [Abstract] [Full Text] [Related] [New Search]